Cyanobacteria and the Great Oxidation Event: evidence from genes and fossils

نویسندگان

  • Bettina E. Schirrmeister
  • Muriel Gugger
  • Philip C. J. Donoghue
  • Andrew Smith
چکیده

Cyanobacteria are among the most ancient of evolutionary lineages, oxygenic photosynthesizers that may have originated before 3.0 Ga, as evidenced by free oxygen levels. Throughout the Precambrian, cyanobacteria were one of the most important drivers of biological innovations, strongly impacting early Earth's environments. At the end of the Archean Eon, they were responsible for the rapid oxygenation of Earth's atmosphere during an episode referred to as the Great Oxidation Event (GOE). However, little is known about the origin and diversity of early cyanobacterial taxa, due to: (1) the scarceness of Precambrian fossil deposits; (2) limited characteristics for the identification of taxa; and (3) the poor preservation of ancient microfossils. Previous studies based on 16S rRNA have suggested that the origin of multicellularity within cyanobacteria might have been associated with the GOE. However, single-gene analyses have limitations, particularly for deep branches. We reconstructed the evolutionary history of cyanobacteria using genome scale data and re-evaluated the Precambrian fossil record to get more precise calibrations for a relaxed clock analysis. For the phylogenomic reconstructions, we identified 756 conserved gene sequences in 65 cyanobacterial taxa, of which eight genomes have been sequenced in this study. Character state reconstructions based on maximum likelihood and Bayesian phylogenetic inference confirm previous findings, of an ancient multicellular cyanobacterial lineage ancestral to the majority of modern cyanobacteria. Relaxed clock analyses provide firm support for an origin of cyanobacteria in the Archean and a transition to multicellularity before the GOE. It is likely that multicellularity had a greater impact on cyanobacterial fitness and thus abundance, than previously assumed. Multicellularity, as a major evolutionary innovation, forming a novel unit for selection to act upon, may have served to overcome evolutionary constraints and enabled diversification of the variety of morphotypes seen in cyanobacteria today.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Genetic analysis of polyketide synthase and peptide synthase genes of ‎cyanobacteria as a mining tool for new pharmaceutical compounds

Cyanobacteria are considered a promising source for new ‎pharmaceutical lead compounds and a large number of chemically diverse and ‎bioactive metabolites have been obtained from cyanobacteria. Despite of ‎several worldwide studies on prevalence of NRPSs and PKSs among the ‎cyanobacteria, none of them included Iranian cyanobacteria of Kermanshah ‎province. Therefore, the aim of this study was t...

متن کامل

Detection and Relation of Polyketide Synthase (PKSs) Genes With Antimicrobial Activity in Terrestrial Cyanobacteria of Lavasan

Background and Aims: Cyanobacteria are considered as favorable source for new pharmaceutical compounds. To date, the majority of bioactive metabolites isolated from cyanobacteria are either polyketides (PKSs) or non-ribosomal peptides. Despite of several worldwide studies on prevalence of PKSs, none of them included the terrestrial cyanobacteria of the Lavasan. Therefore, this study aimed to de...

متن کامل

Deciphering Primordial Cyanobacterial Genome Functions from Protein Network Analysis

The Great Oxidation Event (GOE) ∼2.4 billion years ago resulted from the accumulation of oxygen by the ancestors of cyanobacteria [1-3]. Cyanobacteria continue to play a significant role in primary production [4] and in regulating the global marine and limnic nitrogen cycles [5, 6]. Relatively little is known, however, about the evolutionary history and gene content of primordial cyanobacteria ...

متن کامل

Cyanobacteria: Promising biocatalysts for sustainable chemical production.

Cyanobacteria are photosynthetic prokaryotes showing great promise as biocatalysts for the direct conversion of CO2 into fuels, chemicals, and other value-added products. Introduction of just a few heterologous genes can endow cyanobacteria with the ability to transform specific central metabolites into many end products. Recent engineering efforts have centered around harnessing the potential ...

متن کامل

Evolution of multicellularity coincided with increased diversification of cyanobacteria and the Great Oxidation Event.

Cyanobacteria are among the most diverse prokaryotic phyla, with morphotypes ranging from unicellular to multicellular filamentous forms, including those able to terminally (i.e., irreversibly) differentiate in form and function. It has been suggested that cyanobacteria raised oxygen levels in the atmosphere around 2.45-2.32 billion y ago during the Great Oxidation Event (GOE), hence dramatical...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 58  شماره 

صفحات  -

تاریخ انتشار 2015